neurofeedback Research

RESEARCH ON SLEEP DISORDERS

At least 40 million Americans each year suffer from chronic, long-term, sleep disorders. An additional 20 million experience occasional sleep problems. Neurofeedback is a powerful tool for helping people fall asleep and stay asleep. Over 3,000 licensed health professionals such as psychologists, therapists, and doctors now use this new technology daily with patients. As a group, they report significant and consistent improvements for client sleep problems. Many brain training options can help as well as making lifestyle changes and changes in sleep “hygiene”. A skilled neurofeedback clinician can review many different options with clients to help them assess what’s most appropriate for their problem, including several brain regulating technologies such as Alpha-Stim and Brain Music.

 

CASE STUDIES ON SLEEP DISORDERS


Neurofeedback in ADHD and insomnia: Vigilance stabilization through sleep spindles and circadian networks. [link]
Arns M, Kenemans JL. www.ncbi.nlm.nih.gov/pubmed/23099283
Abstract In this review article an overview of the history and current status of neurofeedback for the treatment of ADHD and insomnia is provided. Recent insights suggest a central role of circadian phase delay, resulting in sleep onset insomnia (SOI) in a sub-group of ADHD patients. Chronobiological treatments, such as melatonin and early morning bright light, affect the suprachiasmatic nucleus. This nucleus has been shown to project to the noradrenergic locus coeruleus (LC) thereby explaining the vigilance stabilizing effects of such treatments in ADHD. It is hypothesized that both Sensori-Motor Rhythm (SMR) and Slow-Cortical Potential (SCP) neurofeedback impact on the sleep spindle circuitry resulting in increased sleep spindle density, normalization of SOI and thereby affect the noradrenergic LC, resulting in vigilance stabilization. After SOI is normalized, improvements on ADHD symptoms will occur with a delayed onset of effect. Therefore, clinical trials investigating new treatments in ADHD should include assessments at follow-up as their primary endpoint rather than assessments at outtake. Furthermore, an implication requiring further study is that neurofeedback could be stopped when SOI is normalized, which might result in fewer sessions.

 

The treatment of psychophysiologic insomnia with biofeedback: a replication study. [link]
Hauri PJ, Percy L, Hellekson C, Hartmann E, Russ D www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&list_uids=7138954&dopt=Citation+
ABSTRACT To replicate a previous study, 16 psychophysiological insomniacs were randomly assigned to either Theta feedback or sensorimotor rhythm (SMR) feedback. Evaluations by home sleep logs and by 3 nights in the laboratory were done before biofeedback, immediately after biofeedback, and 9 months later. Results from this study replicate previous findings. Both Theta and SMR feedback seemed effective treatments of insomnia according to home sleep logs. According to evaluations at the sleep laboratory, tense and anxious insomniacs benefited only from Theta feedback but not from SMR feedback, while those who were relaxed at intake but still could not sleep benefited only from SMR but not from Theta feedback.

 

EEG Slow (∼1 Hz) Waves Are Associated With Nonstationarity of Thalamo-Cortical Sensory Processing in the Sleeping Human [link]
Marcello Massimini, Mario Rosanova, and Maurizio Mariotti www.jn.physiology.org/content/89/3/1205.full
Abstract Intracellular studies reveal that, during slow wave sleep (SWS), the entire cortical network can swing rhythmically between extremely different microstates, ranging from wakefulness-like network activation to functional disconnection in the space of a few hundred milliseconds. This alternation of states also involves the thalamic neurons and is reflected in the EEG by a slow (

Click For More Research Articles